Immagine Meteorologia, Volume 4 - La circolazione atmosferica: dalla grande scala al...
Da professionista, dopo un percorso di studi universitario mirato alla conoscenza dell’atmosfera e un lavoro che mi ha fatto vestire i panni di docente e di... Leggi tutto...

Il VIDEO-METEO del Capitano Sottocorona

Immagine Meteo e Clima in Provincia di Messina
La provincia di Messina è stata una provincia italiana della Sicilia. L'ex territorio corrisponde... Leggi tutto...
Immagine Previsioni meteo nazionali 24h - Tabelle riassuntive per le principali città it...
Previsioni meteo nazionali con il tempo atteso per le principali città italiane. In queste mappe... Leggi tutto...
Immagine Webcam - Alassio (Savona)
Webcam Alassio, in provincia di Savona (SV), regione Liguria. Panorama sugli scogli e sul... Leggi tutto...
Immagine Webcam - Ascoli Piceno (Ascoli Piceno)
Webcam Ascoli Piceno (AP), panoramica, sullo sfondo il Monte Ascensione, regione Marche.
Immagine La colomba pasquale: un grande classico della tradizione, tra miti e leggende
Ai tempi di Greci, Egizi e poi Romani per le cerimonie sacre veniva preparato un pane a forma di... Leggi tutto...
Immagine L’AUTUNNO CHE CERCAVAMO STA PER ARRIVARE
Lasciatemelo dire: il disegno barico tracciato dai modelli numerici di previsione per l’inizio di... Leggi tutto...

La formula ipsometrica

Uso della temperatura virtuale nell'integrare la legge idrostaticaE' una formula che si ottiene combinando la legge dei gas perfetti con l'equazione idrostatica e ci spiega perché la pressione atmosferica decresce in modo esponenziale con la quota.


Sebbene in modo approssimato per i motivi che illustreremo tra poco, essa descrive la differenza di altezza fra due livelli di pressione (tale differenza si chiama "spessore"). Ricordiamo che:

Questa è la legge idrostatica


Questa invece è la legge dei gas perfetti


dove per il significato dei vari parametri rimandiamo agli articoli precedenti e cioè, rispettivamente, all'articolo sull'Equilibrio idrostatico e a quello relativo all'Equazione di stato dei gas. Se sostituiamo il valore della densità ρ (ricavabile dalla legge dei gas) nella formula idrostatica otteniamo:

Riarrangiamo la legge idrostatica

Integriamo ora l'equazione ottenuta fra un'altitudine z1 dove la pressione è pari ad un valore P1 e un'altitudine z2 dove la pressione è P2:

Integriamo la legge idrostatica


Ora, rispetto alle altre variabili, sia g che Rd possono essere considerate costanti, quindi il rapporto -g/Rd può essere portato fuori dal segno di integrale. Più complicato è il discorso sulla temperatura virtuale Tv, la quale dipende dalla quota (in modo diverso secondo il giorno) e in un modo che non è in generale possibile descrivere tramite un'equazione che può essere integrata e quindi risolta analiticamente.

Ciò che possiamo fare è allora prendere il valore medio di Tv nello strato compreso fra z1 e z2. Così possiamo scrivere:

Uso della temperatura virtuale nell'integrare la legge idrostatica

dove il segno sopra Tv sta appunto a ricordare che si tratta di un valore medio e quindi costante per quello strato in un dato momento. Le regole di integrazione ci consentono di scrivere:

Uso delle regole di integrazione con la legge idrostatica

dove il simbolo ln rappresenta il logaritmo neperiano (cioè in base "e"). La differenza di due logaritmi è pari al logaritmo del rapporto dei loro argomenti ed essendo ln(x) = -ln(1/x) si ha:

Relazione fra le altezze geometriche e il rapporto fra le relative pressioni


Come si vede, anziché il simbolo di "=" abbiamo usato la "doppia tilde" che indica appunto il fatto che si tratta di un'approssimazione.

L'approssimazione sulla costanza del valore di g (l'accelerazione di gravità in realtà, seppur di poco, varia con la latitudine e l'altitudine in quanto la Terra è leggermente schiacciata ai poli, dunque la distanza dal centro della Terra cambia in entrambi i casi) può essere rimossa sostituendo alle altezze geometriche z1 e z2 le cosiddette altezze geopotenziali H1 e H2 e continuando a considerare g costante e pari a g0, cioè pari al valore medio al livello del mare (che è 9.81 m/s2). Si veda qui cos'è esattamente l'altezza geopotenziale. Qui ci preme far notare come la formula ipsometrica spieghi l'andamento esponenziale della pressione P con la quota.

Infatti, se al livello del mare (dove z1 = 0) la pressione è P0, posto:

Raggruppamento costanti

si ha

La pressione atmosferica in funzione della quota: è la formula ipsometrica

A causa soprattutto dell'approssimazione sulla temperatura, in tale formula (così come per la ipsometrica) l'errore sarà tanto maggiore quanto maggiore è lo spessore dello strato considerato.

Come ulteriore osservazione, anche tramite la formula ipsometrica si può notare come, a parità di differenza di pressione, lo spessore (cioè la differenza tra le due altezze relative a quelle due pressioni) è tanto più grande quanto più (mediamente) è calda l'aria esistente genello strato considerato.

Considerazioni conclusive: l'importanza della formula ipsometrica, pur con le sue limitazioni, crediamo sia risultata chiara da quanto appena esposto. Aggiungiamo che essa, oltre al concetto di "spessore", l'andamento esponenziale della pressione con la quota e il legame con la temperatura dello strato attraversato, ci spiega anche l'esistenza delle correnti a getto (jet stream) ed inoltre permetterà di introdurre un altro concetto importante: quello di "vento termico", un vento fittizio che risulta molto comodo per rappresentare e semplificare la modellizzazione dell'atmosfera.
 
Stampa