Immagine Webcam - Perugia (Perugia)
Webcam molto bella con panorama sulla città di Perugia (PG), capoluogo della regione Umbria. By e

Il VIDEO-METEO del Capitano Sottocorona

Le ultimissime dal Televideo RAI

Anteprima Televideo RAI
Immagine WRF Total Totals, Sweat Index (ita) - ARW - ECM - Lamma
Mappa Lamma del modello WRF-ARW su base ECM che rappresenta gli indici di instabilità Total Totals... Leggi tutto...
Immagine WRF 925hPa Temp RH (centro-nord)
Dal nostro modello matematico previsione per umidità relativa (RH) e temperatura attesi alla quota... Leggi tutto...
Immagine I più grandi eventi meteorologici della storia - Paolo Corazzon
: cosa si nasconde dietro al mito del Diluvio Universale? Quanto incisero le condizioni... Leggi tutto...
Immagine Meteorologia, Volume 5 - Nubi e precipitazioni
Da professionista, dopo un percorso di studi universitario dedicato alla conoscenza... Leggi tutto...
Immagine AL VIA IL CAMBIAMENTO DI CIRCOLAZIONE CHE NELLA SECONDA PARTE DELLA SETTIMANA PO...
I barometri in Italia registrano attualmente una pressione atmosferica i cui valori oscillano... Leggi tutto...
Immagine Medie climatiche e dati statistici di diverse città italiane suddivisi per regi...
Nell'articolo dedicato alle  notiamo come le varie regioni italiane, nel corso delle... Leggi tutto...

Stimare la PROBABILITA' di PRECIPITAZIONI con la tecnica ENSEMBLE

Stimare la PROBABILITA' di PRECIPITAZIONI con la tecnica ENSEMBLE

Mappa ensemble precipitazioni prevista per Domenica 3 NovembreVi presentiamo un prodotto prognostico utile per avere una stima della probabilità di precipitazioni su una certa area geografica. Chi conosce gli "spaghetti" delle corse ensemble dei modelli, sa perfettamente che i modelli matematici sono piuttosto sensibili (purtroppo) agli errori, in particolare quelli sulle condizioni iniziali.

Per valutare l'affidabilità di una certa simulazione, opportunamente e deliberatamente si vanno quindi a modificare tali condizioni iniziali per vedere quanto le soluzioni divergono rispetto alla corsa principale. Ne esce così un ventaglio (spaghetti...) di soluzioni di un certo parametro (altezze geopotenziali, temperature, ecc...) che in alcune zone magari divergono parecchio (scarsa affidabilità previsionale) e in altre no (alta affidabilità previsionale). Nel modello GFS sono attualmente 30 le corse utilizzate (con circa 25km di risoluzione, più bassa risoluzione rispetto al GFS "operativo") + il run di controllo. In queste mappe calcoliamo, punto (griglia) per punto, l'accumulo delle precipitazioni nelle 24 ore previste da ognuna delle 31 corse. Poi stabiliamo una soglia oltre la quale diciamo che c'è "segnale" precipitativo (ad esempio: 1mm, 5mm, 10mm ecc...).

In generale, alcune soluzioni supereranno la soglia, altre no. Andiamo dunque a tracciare il rapporto tra il numero di corse che superano la soglia rispetto al totale, ottenendo così la percentuale di corse che danno segnale su una certa area.

Il termine "probabilistica" lo abbiamo messo tra virgolette perché in effetti più è alta la percentuale, più ci sono soluzioni che convergono verso l'evento "pioggia sì" e quindi più è probabile che piova (specie se la soglia scelta è medio-alta). Tuttavia non va preso alla lettera, perché, ad esempio, se tutte le corse ensemble forniscono segnale precipitativo, la percentuale diventa 100% (31/31), ma ciò non va certo interpretato come pioggia certa! Anche i mm usati come soglia non vanno presi alla lettera, ma solo per individuare le zone con la maggiore intensità del segnale modellistico.


Esempio pratico con la mappa riportata qui (quando le corse erano solo 21, ma l'esempio ovviamente vale ancora): al momento in cui scriviamo, per la giornata di Domenica 3 Novembre 2019, nell'arco delle 24 ore, la "probabilità" di precipitazioni maggiore (con soglia > 5mm) l'abbiamo su Alpi e Prealpi centro-orientali, ovest Sardegna, regioni tirreniche dalla Toscana alla Campania. In particolare le zone blu sono quelle in cui più dell'85% delle corse ensemble mostrano segnale oltre i 5mm. Le zone di tonalità verde sono quelle con le percentuali sotto il 50%. Per inciso nelle mappe riportiamo anche la pressione atmosferica slm media, di quel giorno, delle 21 corse.

Riteniamo che questo tipo di stima, assieme al run principale operativo a più alta risoluzione (più, magari, qualche LAM, come il nostro modello WRF), possa aiutare ad individuare meglio non solo le aree a maggior rischio di precipitazioni, ma anche a capire quando non è il caso di avventurarsi nella previsione e aspettare che le "probabilità" diventino più elevate per poter sciogliere una prognosi. E per chi è interessato, questo è il link per le mappe precipitative probabilistiche ensemble.

Stampa